Precision tests of the Standard Model and beyond

A. Freitas
University of Pittsburgh
Precision tests of the Standard Model and beyond

A. Freitas
University of Pittsburgh
Discovery of Neptune

Seen by Galileo, Lalande, Herschel, Lamont in 17/18th century but not identified as planet.

Around 1800, Lexell, Delambre, Bouvard and others noticed irregularities in orbit of Uranus → Caused by new planet?

1846: Le Verrier and Adams predict position, orbit and mass of Neptune

Observation by Galle in 1846
Perihelion shift of Mercury

Newtonian mechanics: Planets’ orbits are ellipses

Effect of other planets: Point of closest approach (perihelion) moves over time

Analysis of Mercury by Le Verrier in 1859: Disagreement between observation and Newtonian theory of ~ 40” per century

Explained by general relativity Einstein ’16

<table>
<thead>
<tr>
<th>Cause</th>
<th>Perihelion shift (arcsec/century)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pull of other planets</td>
<td>531.63 ± 0.69</td>
</tr>
<tr>
<td>General relativity</td>
<td>42.98 ± 0.04</td>
</tr>
<tr>
<td>Sum</td>
<td>576.61 ± 0.69</td>
</tr>
<tr>
<td>Observation</td>
<td>574.10 ± 0.65</td>
</tr>
</tbody>
</table>
Lamb shift

Quantum mechanics predicts $2s_{1/2}$ and $2p_{1/2}$ of $^1\!_1\!H$ to be degenerate, but measurement shows a small split

Lamb, Retherford '47

Explanation through quantum corrections

Bethe '47

→ Led to development of QED and modern field theory

Schwinger, Feynman '48,49
Precision tests of the Standard Model

Particle spectrum of the Standard Model

Mass

1 GeV

1 MeV

1 eV

0

3 gen. of fermions

bosons

Latest discoveries:
- bottom quark (1977, FNAL)
- W/Z bosons (1983, CERN)
- top quark (1995, FNAL)
- τ neutrino (2000, FNAL)
- Higgs boson (2012, CERN)
Particles and interactions

<table>
<thead>
<tr>
<th>Neutrinos</th>
<th>ν_e</th>
<th>ν_μ</th>
<th>ν_τ</th>
<th>0</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged leptons</td>
<td>e</td>
<td>μ</td>
<td>τ</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>u</td>
<td>c</td>
<td>t</td>
<td>$2/3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarks</td>
<td>d</td>
<td>s</td>
<td>b</td>
<td>$-1/3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Force carriers:
- photon γ
- gluons g_1, \ldots, g_8
- weak bosons W^+, W^-, Z^0
- Higgs boson H, couples to all massive particles
Particles and interactions

Quantum fluctuations:
Virtual emission & re-absorption of all physical particles

\[
\begin{align*}
\text{electromagnetic (QED)} & \quad e^- & \rightarrow & \rightarrow e^- \\
\text{strong (QCD)} & \quad e^- & \rightarrow & \rightarrow \gamma \rightarrow e^- \\
\text{weak} & \quad e^- & \rightarrow W & \rightarrow \nu e \\
\end{align*}
\]
Particles and interactions

Quantum fluctuations:
Virtual emission & re-absorption of all physical particles
Particles and interactions

Quantum fluctuations:
Virtual emission & re-absorption of all physical particles

QCD: corrections of few 10%
em/weak: corrections of few %

→ Sensitivity to heavy particles
from precision measurements
without direct observation
W mass

W-boson mass can be calculated from muon decay rate:

\[\Gamma_{\mu} = \frac{G_F^2 m_\mu^5}{192\pi^3} F\left(\frac{m_e^2}{m_\mu^2}\right) (1 + \Delta q) \]

QED corrections (2-loop)

Ritbergen, Stuart '98
Pak, Czarnecki '08

\[\frac{G_F^2}{\sqrt{2}} = \frac{e^2}{8s_w^2 M_W^2} (1 + \Delta r) \]

electroweak corrections

\[\mu^- \rightarrow \nu_\mu \nu_e e^- \]

Ritbergen, Stuart '98
Pak, Czarnecki '08
The muon decay in the Standard Model:

$$G_F^2 \sqrt{2} = \frac{e^2}{8s_w^2 M_W^2} \left(1 + \Delta r(M_Z, M_H, m_t, \ldots)\right)$$

Electroweak corrections (few %)

Can solve for

$$M_W = M_W(G_F, M_Z, M_H, m_t, \ldots)$$

Although $$m_\mu \ll m_t, M_H, \ldots$$, the muon decay rate is sensitive to $$m_t, M_H, \ldots$$ through quantum corrections.
W mass

µ decay in Standard Model:

\[
\begin{align*}
\mu^- & \rightarrow W^- + \nu_\mu + e^- \\
W^- & \rightarrow \nu_e + e^- \\
\mu^- & \rightarrow t + \nu_\mu + e^- \\
H & \rightarrow W^- + \nu_e + e^-
\end{align*}
\]

\[
G_F^2 = \frac{\frac{G_F^2}{\sqrt{2}}}{8s_w^2M_W^2} (1 + \Delta r(M_Z, M_H, m_t, \ldots))
\]

electroweak corrections (few %)

Can solve for

\[
M_W = M_W(G_F, M_Z, M_H, m_t, \ldots)
\]

Experiment: Particle Data Group '18

\[
G_F = 1.1663787 \times 10^{-5} \text{ GeV}^{-2}
\]

\[
M_W = 80.376(33) \text{ GeV} \quad \text{(LEP)}
\]

\[
80.387(16) \text{ GeV} \quad \text{(TEV)}
\]

\[
80.370(19) \text{ GeV} \quad \text{(LHC)}
\]
Z cross section and branching fractions

$e^+ e^- \rightarrow f \bar{f}$ for $E_{CM} \sim M_Z$:

- Mass M_Z
- Width $\Gamma_Z = \sum_f \Gamma_{ff}$
- Braching ratio $R_f = \Gamma_{ff}/\Gamma_Z$
- $\sigma^0 \approx \frac{12\pi \Gamma_{ee} \Gamma_{ff}}{(s - M_Z^2)^2 + M_Z^2 \Gamma_Z^2} = \frac{12\pi}{M_Z^2} R_e R_f$

$\Gamma_{ff} = C \left[(g_L^f)^2 + (g_R^f)^2 \right]$

$\sigma_{had} [\text{nb}]$

$E_{cm} [\text{GeV}]$

M_Z

Γ_Z

σ^0

$f = e, \mu, \tau, u, d, ...$
$e^+ e^- \rightarrow f \bar{f}$ for $E_{CM} \sim M_Z$:

- Mass M_Z
- Width $\Gamma_Z = \sum_f \Gamma_{ff}$
- Braching ratio $R_f = \Gamma_{ff}/\Gamma_Z$

$\sigma^0 \approx \frac{12\pi \Gamma_{ee} \Gamma_{ff}}{(s-M_Z^2)^2+M_Z^2 \Gamma_Z^2} = \frac{12\pi}{M_Z^2} R_e R_f$

$\Gamma_{ff} = C \left[(g_L^f)^2 + (g_R^f)^2 \right]$
Z cross section and branching fractions

$e^+e^- \rightarrow f \bar{f}$ for $E_{\text{CM}} \sim M_Z$:

- Mass M_Z
- Width $\Gamma_Z = \sum_f \Gamma_{ff}$
- Braching ratio $R_f = \frac{\Gamma_{ff}}{\Gamma_Z}$
- $\sigma^0 \approx \frac{12\pi \Gamma_{ee} \Gamma_{ff}}{(s-M_Z^2)^2 + M_Z^2 \Gamma_Z^2} = \frac{12\pi}{M_Z^2} R_e R_f$

\[
\Gamma_{ff} = C \left[(g^f_L)^2 + (g^f_R)^2 \right]
\]
Z cross section and branching fractions

$e^+ e^- \rightarrow f \bar{f}$ for $E_{\text{CM}} \sim M_Z$:

- Mass M_Z
- Width $\Gamma_Z = \sum_f \Gamma_{ff}$
- Braching ratio $R_f = \Gamma_{ff}/\Gamma_Z$
- $\sigma^0 \approx \frac{12\pi \Gamma_{ee} \Gamma_{ff}}{(s-M_Z^2)^2+M_Z^2\Gamma_Z^2} = \frac{12\pi}{M_Z^2} R_e R_f$

Comparison with experiment:

$\Gamma_{ll} = 83.984(86) \text{ MeV}$

$R_b = 0.2163(7)$

Particle Data Group '18
\textbf{Z-pole asymmetries}

Parity violation in $Z f \bar{f}$ couplings:
\[g^f_L \neq g^f_R \]

\textbf{Left-right asymmetry:}
\[
A_{LR} \equiv \frac{1}{P_{e^-}} \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} = A_e
\]
\[
A_f = \frac{2(1 - 4\sin^2 \theta^f_{\text{eff}})}{1 + (1 - 4\sin^2 \theta^f_{\text{eff}})^2}
\]
\[
\sin^2 \theta^f_{\text{eff}} = \frac{g^f_R}{2|Q_f|(g^f_R - g^f_L)}
\]
Z-pole asymmetries

Forward-backward asymmetry:

\[
A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{3}{4} A_e A_f
\]

![Diagram of forward-backward asymmetry](image)

Polarization asymmetry:

Average \(\tau \) pol. in \(e^+e^- \to \tau^+\tau^- \)

\[
\langle P_\tau \rangle = -A_\tau
\]

![Graph of OPAL collaboration '01](image)
Z-pole asymmetries

Forward-backward asymmetry:

\[A_{FB} \equiv \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B} = \frac{3}{4} A_e A_f \]

\[e^- \quad \overline{f} \quad \theta \quad f \quad e^+ \]

Polarization asymmetry:

Average \(\tau \) pol. in \(e^+e^- \rightarrow \tau^+\tau^- \)

\[\langle \mathcal{P}_\tau \rangle = -A_\tau \]

Comparison with experiment:

\[A_l = 0.1475(10) \]

Particle Data Group '12
Combination and SM fit

Constraints from fit of SM to *all* electroweak precision observables:

LEP EWWG ’05

- **Tevatron**
- **SM constraint 68% CL**
- **Direct search lower limit (95% CL)**

Graph showing the constraint on M_t and M_H over years from 1990 to 2005.

Erler ’18

Graph showing the constraint on m_t and M_H with various exclusions and direct measurements.

- σ_had, R_l, R_q (1σ)
- Z pole asymmetries (1σ)
- M_W (1σ)
- Direct m_t (1σ)
- Direct M_H
- All except direct M_H (90%)

Table showing the fit of SM with various asymmetries and measurements.

- A_l(LEP)
- A_l(SLD)
- $A_{FB}^{0,b}$
- M_W
- M_H
- Fit w/o M_H
- LHC average

Results:

- 109^{+247}_{-66}
- 40^{+34}_{-29}
- 387^{+585}_{-169}
- 60^{+56}_{-19}
- 94^{+25}_{-22}
- 125.7 ± 0.4
Radiative loop corrections

<table>
<thead>
<tr>
<th></th>
<th>M_W [GeV]</th>
<th>$\sin \theta_{W,\text{eff}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>± 0.012</td>
<td>± 16</td>
</tr>
<tr>
<td>LHC</td>
<td>± 0.010</td>
<td>± 15</td>
</tr>
<tr>
<td>ILC/GigaZ</td>
<td>± 0.005</td>
<td>± 1.3</td>
</tr>
<tr>
<td>1-loop</td>
<td>± 0.450</td>
<td>± 1000</td>
</tr>
<tr>
<td>2-/3-loop QCD</td>
<td>± 0.070</td>
<td>± 45</td>
</tr>
<tr>
<td>ferm. 2-loop EW</td>
<td>± 0.050</td>
<td>± 90</td>
</tr>
<tr>
<td>bos. 2-loop EW</td>
<td>± 0.002</td>
<td>± 1</td>
</tr>
<tr>
<td>leading 3-loop</td>
<td>± 0.005</td>
<td>± 25</td>
</tr>
</tbody>
</table>

Experimental precision sensitive to 2-/3-loop effects

- Marciano, Sirlin '80
- Djouadi et al. '88
- Chetyrkin, Kühn, Steinhauser '95
- Freitas et al. '00, Awramik, Czakon '03
- Awramik, Czakon, Freitas, Weiglein '04
- Awramik, Czakon, Freitas '06
- Faisst, Kühn, Seidensticker, Veretin '03
Theory calculations

Experimental precision requires inclusion of **radiative corrections** in theory (1-loop, 2-loop, and partial 3-loop)

Integrals over momenta/energies in loop:

\[
\int d^4q_1 d^4q_2 \, f(q_1, q_2, p_1, p_2, \ldots, m_1, m_2, \ldots)
\]

Example:

\[
\int_{-\infty}^{\infty} d^4q \, \frac{\ldots}{[q^2 - m_t^2][(q + p)^2 - m_b^2]} = \lim_{\Lambda \to \infty} \frac{3g^2}{32\pi^2} m_t^2 \left(\log \frac{\Lambda^2}{m_t^2} + \frac{1}{2} \right) + O\left(\frac{p^2}{m_t^2}\right)
\]

- Individual integrals can be **divergent** ($\Lambda \to \infty$)
 - Only complete physical result finite
- Beyond 1-loop in general no analytical results

Berends, Böhm, Buza, Scharf '94
Numerical integration of loop integrals:

- **Divergent terms:** Remove e.g. through subtraction of simpler terms

\[\int d^4 q_1 d^4 q_2 (f - f_{\text{sub}}) + \int d^4 q_1 d^4 q_2 f_{\text{sub}} \]

- **Stability and fast convergence:**
 - For \(n \)-dim. integral, perform some integrations analytically
 - Variables transformations to avoid singularities and peaks

References:

- Cvitanovic, Kinoshita ’74
- Awramik, Czakon, Freitas ’06
- Levine, Park, Roskies ’82
- Becker, Reuschle, Weinzierl ’10
- Bauberger ’97
- Freitas ’12
- Nagy, Soper ’03
- ...
Theory calculations: Status

Organization of calculation:

- Large number of diagrams and tensor integrals, $\mathcal{O}(100) - \mathcal{O}(10000)$
- Computer algebra tools for generation of diagram and algebra manipulations
- Efficient codes (C/Fortran) for numerical integration
- No multi-purpose program for (≥ 2)-loop calculations

Many seminal works on 1-loop and leading 2-loop corrections

- Veltman, Passarino, Sirlin, Marciano, Bardin, Hollik, Riemann, Degrassi, Kniehl, ...

Full 2-loop results for M_W, Z-pole observables

- Freitas, Hollik, Walter, Weiglein '00
- Awramik, Czakon '02
- Onishchenko, Veretin '02
- Awramik, Czakon, Freitas, Weiglein '04
- Awramik, Czakon, Freitas, Kniehl '08
- Dubovyk, Freitas, Gluza, Riemann, Usovitsch '16,18

Approximate 3- and 4-loop results (to ρ parameter)

- Chetyrkin, Kühn, Steinhauser '95
- Faisst, Kühn, Seidensticker, Veretin '03
- Boughezal, Tausk, v. d. Bij '05
- Schröder, Steinhauser '05
- Chetyrkin et al. '06
- Boughezal, Czakon '06
Searching for new physics

- All constituents of SM have been discovered
- SM leaves important open questions:
 - dark matter
 - matter-antimatter asymmetry
 - gravity
 - ...
- No evidence of new particles at Large Hadron Collider (LHC)
- Electroweak precision tests can constrain (or reveal) physics beyond the SM
Constraints on New Physics

4th Generation

SM has 3 fermion generations

Hypothetical extra generation: t', b', l_4, ν_4

Limits from electroweak precision observables:

Eberhardt '13

![Graphs showing limits from electroweak precision observables](image)
Constraints on New Physics

Two Higgs Doublet Model

SM has one Higgs doublet (4 components)

→ Higgs boson + 3 “eaten” by W/Z bosons

Second Higgs doublet: Four new particles H^0, A^0, H^+, H^-

Limits from electroweak precision observables:

![Image]

$m_{H^+} = 500$ GeV

Eberhardt '13
Constraints on New Physics

(Infinitely) long list of models:

- Models with new interactions
- Models with more Higgs bosons
- Models with a composite Higgs boson
- Models with supersymmetry
- Models with extra dimensions
- Models with a dark sector
- etc.
Effective operator analysis

Model-independent analysis:
- Describe effect of new particle through **effective operators**
- Symmetries of SM permit only small number of possible operators

Wilson '69; Weinberg '79
Effective operator analysis

- New particles with large masses $m_X \sim m_Y \sim \Lambda$:
 Particle cannot be produced directly if $\Lambda > E_{\text{collision}}$

- Short-term (“virtual”) fluctuations due to uncertainty principle:
 \[(\Delta E)(\Delta t) \geq \frac{\hbar}{2}, \quad \Delta E = \Lambda - E_{\text{collision}} \]
 Larger Λ \Rightarrow Smaller Δt \Rightarrow Smaller measureable correction

- Need higher precision to probe larger mass scales Λ
Effective operator analysis

Assuming generation universality:

- Electroweak precision tests put constraints on new physics at TeV scale → Complementary to LHC
- Proposed new e^+e^- colliders (ILC/CEPC/FCC-ee) can improve reach by factor ~ 10

Pomaral, Riva '13
Ellis, Sanz, You '14
Future e^+e^- colliders

- **International Linear Collider (ILC)**
 Int. lumi at $\sqrt{s} \sim M_Z$: 100 \times LEP

- **Circular Electron-Positron Collider (CEPC)**
 Int. lumi at $\sqrt{s} \sim M_Z$: 1,000-10,000 \times LEP

- **Future Circular Collider (FCC-ee)**
 Int. lumi at $\sqrt{s} \sim M_Z$: $> 10^5$ \times LEP
An intriguing mystery

Muon anomalous magnetic moment

Spin-1/2 particle with charge q has magnetic moment $\frac{q}{2m}g$

Dirac equation: $g = 2$

Quantum corrections: $a_\mu \equiv \frac{g_\mu - 2}{2} \neq 0$

Measured at BNL g–2 experiment:

$$a_\mu = (11659208.0 \pm 6.3) \times 10^{-10}$$
An intriguing mystery

Muon anomalous magnetic moment

Spin-1/2 particle with charge q has magnetic moment $\frac{q}{2m}g$

Dirac equation: $g = 2$

Quantum corrections: $a_\mu \equiv \frac{g\mu - 2}{2} \neq 0$

Measured at BNL g–2 experiment:

$a_\mu = (11\,659\,208.0 \pm 6.3) \times 10^{-10}$
An intriguing mystery

Muon anomalous magnetic moment

Spin-1/2 particle with charge q has magnetic moment $\frac{q}{2mg}$

Dirac equation: $g = 2$

Quantum corrections: $a_\mu \equiv \frac{g\mu^2 - 2}{2} \neq 0$

Measured at BNL g–2 experiment:

$$a_\mu = (11 659 208.0 \pm 6.3) \times 10^{-10}$$

FNAL g–2 experiment target:

$$a_\mu = (\pm 1.6) \times 10^{-10}$$
An intriguing mystery

Muon anomalous magnetic moment

Spin-1/2 particle with charge q has magnetic moment $\frac{q}{2m}g$

Dirac equation: $g = 2$

Quantum corrections: $\alpha_\mu \equiv \frac{g\mu - 2}{2} \neq 0$

Measured at BNL g–2 experiment:

$\alpha_\mu = (11\,659\,208.0 \pm 6.3) \times 10^{-10}$

FNAL g–2 experiment target:

$\alpha_\mu = (\pm 1.6) \times 10^{-10}$
Muon $g-2$: SM theory prediction

<table>
<thead>
<tr>
<th>QED $\mathcal{O}(\alpha^5)$</th>
<th>$a_\mu , [10^{-10}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 658 471.88 ± 0.01</td>
<td></td>
</tr>
</tbody>
</table>

Aoyama, Hayakawa, Kinoshita, Nio '12
Muon $g-2$: SM theory prediction

<table>
<thead>
<tr>
<th></th>
<th>$a_\mu [10^{-10}]$</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED $O(\alpha^5)$</td>
<td>$11,658,471.88 \pm 0.01$</td>
<td>Aoyama, Hayakawa, Kinoshita, Nio ’12</td>
</tr>
<tr>
<td>EW $O(\alpha^2)$</td>
<td>15.4 ± 0.1</td>
<td>Czarnecki, Krause, Marciano ’96, Knecht et al. ’02, Gnedinger et al. ’13</td>
</tr>
</tbody>
</table>

![Diagrams](attachment:diagrams.png)
Muon $g-2$: SM theory prediction

<table>
<thead>
<tr>
<th></th>
<th>$a_\mu [10^{-10}]$</th>
<th>Source(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED $\mathcal{O}(\alpha^5)$</td>
<td>11 658 471.88 ± 0.01</td>
<td>Aoyama, Hayakawa, Kinoshita, Nio ’12</td>
</tr>
<tr>
<td>EW $\mathcal{O}(\alpha^2)$</td>
<td>15.4 ± 0.1</td>
<td>Czarnecki, Krause, Marciano ’96</td>
</tr>
<tr>
<td>LO had. vac. pol.</td>
<td>693.1 ± 3.4</td>
<td>Knecht et al. ’02</td>
</tr>
<tr>
<td>NLO</td>
<td>−9.87 ± 0.09</td>
<td>Gnedinger et al. ’13</td>
</tr>
<tr>
<td>NNLO</td>
<td>1.24 ± 0.01</td>
<td>Davier, Hoecker, Malaescu, Zhang ’17</td>
</tr>
</tbody>
</table>

A) $\gamma \rightarrow \mu h$

B) $\gamma \rightarrow e h$

C) $\gamma \rightarrow h h$

D) $h \rightarrow \mu$

The figure on the right shows the Feynman diagrams for the processes involving the muon and hadrons, with γ, μ, and h representing the photon, muon, and hadron respectively.
Muon $g-2$: SM theory prediction

<table>
<thead>
<tr>
<th>Contribution</th>
<th>$a_{\mu} [10^{-10}]$</th>
<th>Authors and LoC</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED $\mathcal{O}(\alpha^5)$</td>
<td>11 658 471.88 ± 0.01</td>
<td>Aoyama, Hayakawa, Kinoshita, Nio ’12</td>
</tr>
<tr>
<td>EW $\mathcal{O}(\alpha^2)$</td>
<td>15.4 ± 0.1</td>
<td>Czarnecki, Krause, Marciano ’96</td>
</tr>
<tr>
<td>EW $\mathcal{O}(\alpha^2)$</td>
<td>15.4 ± 0.1</td>
<td>Knecht et al. ’02</td>
</tr>
<tr>
<td>LO had. vac. pol.</td>
<td>693.1 ± 3.4</td>
<td>Gnedinger et al. ’13</td>
</tr>
<tr>
<td>NLO</td>
<td>−9.87 ± 0.09</td>
<td>Davier, Hoecker, Malaescu, Zhang ’17</td>
</tr>
<tr>
<td>NNLO</td>
<td>1.24 ± 0.01</td>
<td>Jegerlehner ’17</td>
</tr>
<tr>
<td>light-by-light</td>
<td>10.5 ± 2.6</td>
<td>Keshavarzi, Nomura, Teubner ’18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prades, de Rafael, Vainshtein ’09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nyffeler ’09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erler, Toledo Sanchez ’06</td>
</tr>
</tbody>
</table>

![Diagram showing Feynman diagram for muon $g-2$ calculation](image)

The Feynman diagram illustrates the process of muon decay, with the contributions from various terms and their permutations.
Muon $g-2$: SM theory prediction

<table>
<thead>
<tr>
<th></th>
<th>$a_\mu \times 10^{-10}$</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED $\mathcal{O}(\alpha^5)$</td>
<td>11 658 471.88 ± 0.01</td>
<td>Aoyama, Hayakawa, Kinoshita, Nio ’12</td>
</tr>
<tr>
<td>EW $\mathcal{O}(\alpha^2)$</td>
<td>15.4 ± 0.1</td>
<td>Czarnecki, Krause, Marciano ’96</td>
</tr>
<tr>
<td>LO had. vac. pol.</td>
<td>693.1 ± 3.4</td>
<td>Davier, Hoecker, Malaescu, Zhang ’17</td>
</tr>
<tr>
<td>NLO</td>
<td>−9.87 ± 0.09</td>
<td>Jegerlehner ’17</td>
</tr>
<tr>
<td>NNLO</td>
<td>1.24 ± 0.01</td>
<td>Keshavarzi, Nomura, Teubner ’18</td>
</tr>
<tr>
<td>light-by-light</td>
<td>10.5 ± 2.6</td>
<td>Prades, de Rafael, Vainshtein ’09</td>
</tr>
<tr>
<td>Total</td>
<td>11 659 182.3 ± 4.3</td>
<td>Nyffeler ’09</td>
</tr>
<tr>
<td>Exp</td>
<td>11 659 208.0 ± 6.3</td>
<td>Erler, Toledo Sanchez ’06</td>
</tr>
</tbody>
</table>

→ \gtrsim 3.5 standard deviations!
Muon $g-2$: Uncertainties

Difficulties with hadronic contributions:

- Quarks form bound states (hadrons), difficult to compute from first principles†

†Ongoing work using Lattice QCD:

Blum et al. ’15,18 Lehner et al. ’17
Chakraborty et al. ’16 Borsanyi et al. ’17
Della Morte et al. ’17
Muon $g-2$: Uncertainties

Difficulties with hadronic contributions:

- Quarks form bound states (hadrons), difficult to compute from first principles †

†Ongoing work using Lattice QCD:

Blum et al. '15,18 Lehner et al. '17
Chakraborty et al. '16 Borsanyi et al. '17
Della Morte et al. '17
Muon $g-2$: Uncertainties

Difficulties with hadronic contributions:

- Quarks form bound states (hadrons), difficult to compute from first principles\(^\dagger\)

Hadronic contributions from e^+e^- data

- \(^\dagger\)Ongoing work using Lattice QCD:
 - Blum et al. ’15, ‘18
 - Lehner et al. ’17
 - Chakraborty et al. ’16
 - Borsanyi et al. ’17
 - Della Morte et al. ’17

\(^\dagger\)Ongoing work using Lattice QCD:
- Davier et al. ’17
- Jegerlehner ’17
- Keshavarzi, Nomura, Teubner ’18
New physics: Simplified models

Introduce one or two new fields (spin $0, \frac{1}{2}, 1$; SU(2) singlet, doublet, triplet)

\[\Delta a_{\mu} \equiv a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (29.3 \pm 8.4) \rightarrow \begin{cases}
 m_{\text{NP}} \sim \text{few} \times 100 \text{ GeV} \\
 g_{\text{NP}} \sim 1
\end{cases} \]

\[\rightarrow \text{Within reach of LHC!} \]

- Identify parameter space that matches Δa_{μ}
- Compare with constraints from LHC searches
Two new fields: Allowed parameter space

Freitas, Kell, Lykken, Westhoff ’14
Summary

- **Electroweak precision tests** have played an important role in testing the Standard Model
 - Constraints on m_t and M_H before their discovery

- Today they probe physics beyond the Standard Model at **TeV scale**

- **Electroweak fits** rely on detailed theory calculations

- Intriguing deviation in the **muon anomalous magnetic moment** will be tested in near future
Backup slides